
Supervised learning to detect salt body 
Pablo Guillen (University of Houston), German Larrazabal (Repsol USA), Gladys González (Repsol USA) 

Dainis Boumber (University of Houston), Ricardo Vilalta (University of Houston)  
 

Summary 

 

In this paper we present a novel approach to detect salt 

bodies based on seismic attributes and supervised learning. 

We report on the use of a machine learning algorithm, 

Extremely Randomized Trees, to automatically identify and 

classify salt regions. We have worked with a complex 

synthetic seismic dataset from phase I model of the SEG 

Advanced Modeling Corporation (SEAM) that corresponds 

to deep water regions of the Gulf of Mexico. This dataset 

has very low frequency and contains sediments bearing 

amplitude values similar to those of salt bodies. In the first 

step of our methodology, where machine learning is 

applied directly to the seismic data, we obtained accuracy 

values of around 80%. A second (post-processing) 

smoothing step improved accuracy to around 95%. We 

conclude that machine learning is a promising mechanism 

to identify salt bodies on seismic data, especially with 

models that can produce complex decision boundaries, 

while being able to control the associated variance 

component of error. 

 

Introduction 

 

Seismic-data interpretation has as its main goal the 

identification of compartments, faults, fault sealing, and 

trapping mechanism that hold hydrocarbons; it additionally 

tries to understand the depositional history of the 

environment to describe the relationship between seismic 

data and a priori geological information. Data mining or 

knowledge discovery in databases (KDD) has become a 

significant area both in academia and industry. Data mining 

is the process of extracting novel, useful and 

understandable patterns from a large collection of data. 

Automated tools for knowledge discovery are frequently 

invoked in databases to unveil patterns that show how 

objects group into some classification scheme; algorithms 

make use of higher order statistics, feature extraction 

methods, pattern recognition, clustering methods, and 

unsupervised and supervised classification. A major 

strategy in this field is to apply data mining algorithms 

(Hastie, 2011) to classify points or parts of the 3D seismic 

data to reinforce correct data interpretations. Multiple 

studies have shown the benefits of using data mining 

techniques for seismic-data interpretation. For example, 

previous work has shown how to generate a set of seismic 

traces from velocity models containing faults with varying 

locality, using machine learning to identify the presence of 

a fault in previously unseen traces (Zhang et. al., 2014). 

Other techniques segment a seismic image into structural 

and stratigraphic geologic units (Hale, 2002), which is best 

done using global optimization methods (Shi et. al., 2000; 

Hale et. al., 2003). Another solution is to use unsupervised 

learning techniques (Coléou et. al., 2003), often relying on 

the application of Self Organizing Maps (Castro de Matos 

et. al., 2007). Our new approach is essentially a novel salt 

body detection workflow. The workflow as a whole 

envisions the creation of a software solution that can 

automatically identify, classify and delineate salt bodies 

from seismic data using seismic attributes and supervised 

learning algorithms. A comparison between the salt body 

detected and its interpretation from 3D synthetic data set 

testifies to the effectiveness of our approach. 

 

Method 

 

Automated classification of salt bodies using machine 

learning 

 

Our approach aims at automatically identifying and 

delineating geological elements from seismic data. 

Specifically, we focus on the automatic classification of 

salt bodies using supervised learning techniques. In 

supervised learning we assume each element of study is 

represented as an n-component vector-valued random 

variable (X1, X2,..,Xn), where each Xi  represents an 

attribute or feature; the space of all possible feature vectors 

is called the input space X. We also consider a set {w1, 

w2,...,wk} corresponding to the possible classes; this forms 

the output space W. A classifier or learning algorithm 

typically receives as input a set of training examples from a 

source domain, T = {(xi, wi)}, where x = (x1, x2,…,xn) is a 

vector in the input space, and w is a value in the (discrete) 

output space. We assume the training or source sample T 

consists of independently and identically distributed (i.i.d.) 

examples obtained according to a fixed but unknown joint 

probability distribution, P(x,w), in the input-output space.  

The outcome of the classifier is a hypothesis or function 

f(x) mapping the input space to the output space, f: X → 

W. We commonly choose the hypothesis that minimizes 

the expected value of a loss function (e.g., zero-one loss).  

 

The challenge behind classification of seismic data 

 

Our workflow takes as input a cube of seismic data where 

each voxel stands as a feature vector (we used three 

informative features as described below). From the whole 

cube we take a small fraction of representative voxels to 

conform a training set T = {(xi, wi)}, where x = (x1, x2, x3); 

we assume only two classes: w1 and w2, corresponding to 

voxels inside and outside the salt body, respectively. This 
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workflow is challenging because 1) the sheer size of the 3D 

data cube precludes training predictive models with more 

than just 1% of the available training data; this implies 

several regions of the cube may not be fairly represented in 

the training set; 2) many learning algorithms are unable to 

cope with millions of training examples; it took days to 

complete the entire data processing; 3) classification is 

difficult because many voxels inside and outside salt bodies 

have very similar appearance. In machine learning 

terminology this is a problem known as high Bayes error. 

The success of this workflow is clearly contingent on 

finding useful and informative features to appropriately 

discriminate among classes.  

 

Informative attributes to generate predictive models in 

seismic data 

 

A proper characterization of voxels can be attained with 

useful and informative features. We selected three features 

for our study exhibiting high correlation with the target 

class: signal amplitude (directly from seismic data), second 

derivative, and curve length; the last two derived from 

amplitude. Second derivative is instrumental to detect 

edges in images, and curve length capture patterns which 

characterize different features observed inside a salt 

structure and in its surroundings. 

 

Supervised learning algorithms 

 

Our data analysis phase receives as input a body of seismic 

data with the task of automatically identifying salt regions. 

We randomly sample a small fraction (0.5%) of the total 

data; the sample is then assigned class labels by an expert 

(aided by a software tool that simplifies the labeling 

process). To achieve a class-balanced problem, we made 

sure exactly one half of the subset corresponded to salt, and 

the other half as non-salt (the task exhibited equal class 

priors). The model was built using 2 million training 

voxels. Accuracy is estimated using 10-fold cross 

validation (Hastie, 2011). The classification model was 

subsequently used to automatically label the entire body of 

seismic data (376,752,501 voxels). Our top performing 

learning algorithms were the following: Gradient Boosting 

Trees (Accuracy 80%), Extremely Randomized Trees 

(Accuracy 80%), and Random Forests (Accuracy 79%). All 

our learning algorithms are ensemble methods; these 

techniques have shown remarkable performance due to 

their ability to attain low bias (using complex decision 

boundaries), and low variance (achieved by averaging over 

various models). 
 

Example 

 

We have tested our proposed technique using SEAM I 

(SEG Advance Modeling Corporation) data. This comes 

from marine acquisition and represents strong challenges to 

the geophysical community. Inspiration was deep water 

(600 – 2000 meters) US GOM Salt Structure and its major 

structural features are salt body with rugose top and 

overhangs, twelves radial faults near the root salt, 

overturned sediment raft proximate to salt root and internal 

sutures and a heterogeneous salt cap. The migrated seismic 

volume was obtained with very low frequency, and there 

are sediments locations with similar amplitude value than 

salt body. A migrated seismic volume with these kinds of 

features is very complex for detection of salt body. 

Mathematical and machine learning algorithms were taken 

from Python’s Numpy and Scikit-learn libraries, 

respectively. Our final predictive model of choice was 

Extremely Randomized Trees, which was used to predict 

the labels of 376,752,501 samples; this resulted in a 

Boolean mask. The accuracy reported was essentially the 

same as in cross validation (80%). After that, we have 

removed outliers and misclassification using mathematical 

morphological operations and a 3D interactive guided 

(manual intervention) tool developed in house; finally, we 

used threshold segmentation using local average threshold 

to get better detection results. 

 

Results 

 

We describe our results by visually comparing our 

predictions on a cube of seismic data. Figure 1(a) shows a 

cross section of the seismic data, figure 1(b) shows the 

classification obtained with our proposed methodology, and 

figure 1(c) shows the classification after the post-

processing step. 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1: (a) Seismic data, (b) classification using our method, (c) 

results obtained with a post-processing step. 

 

Figure 2 shows the overlapping between seismic data and 

salt body (white color) detected on different inline 
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locations. We can observe that seismic attributes used in 

combination with the machine learning algorithm allows 

capturing and classifying different patterns and features 

between sediments and salt body.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Overlapping between seismic data and salt body 

detected. 

 

To measure accuracy, we count the number of hits between 

the detected salt body and the interpretation in the 

following way: using both volumes, we have counted the 

number of hits voxel by voxel. We refer to this number as 

NH. The effectiveness ratio is calculated as: (NH/TS) * 

100, where TS is the total number of voxels in the volume. 

Following this technique, we have obtained an accuracy of 

95.22%.  

 

Figure 3 shows a comparison between our salt body 

detected (white color) and its interpretation (red color). We 

can see the promising quality of our detection for the 

synthetic seismic dataset used in this work.  

 

Conclusions 

 

We have shown an efficient approach to classify salt bodies 

from a very complex synthetic seismic dataset using 

machine learning techniques. Results show very high 

accuracy when machine learning algorithms are used to 

predict class labels of voxels on a seismic cube; this is true 

even after training with a very small portion of the data 

(0.5%). After a first step, where machine learning is applied 

directly to the data, we obtained accuracy values of around 

80%. A second (post-processing) step increased accuracy to 

around 95%. We conclude that machine learning is a 

promising mechanism to identify geological bodies on 

seismic data when the selected model has high capacity, 

and is able to control the variance component of error by 

model averaging (using ensemble techniques).  

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Overlapping between seismic data.  (a) salt body 

detected, and (b) interpretation. 
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