ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/287242343
Fault resilient physical neural networks on a single chip

Article - October 2014

DOI: 10.1145/2656106.2656126

CITATIONS READS
2 23

7 authors, including:

& Weidong Shi B\ xiZhao
University of Houston Xi'an Jiaotong University

121 PUBLICATIONS 1,221 CITATIONS 53 PUBLICATIONS 578 CITATIONS
SEE PROFILE SEE PROFILE

Dainis Boumber Ricardo Vilalta

University of Houston University of Houston

8 PUBLICATIONS 27 CITATIONS 206 PUBLICATIONS 1,976 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

et Cloud Computing Security View project

et Blockchain Technology View project

All content following this page was uploaded by Ricardo Vilalta on 08 August 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/287242343_Fault_resilient_physical_neural_networks_on_a_single_chip?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/287242343_Fault_resilient_physical_neural_networks_on_a_single_chip?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cloud-Computing-Security-8?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Blockchain-Technology-2?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weidong_Shi?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weidong_Shi?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Houston?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Weidong_Shi?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xi_Zhao?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xi_Zhao?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Xian_Jiaotong_University?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xi_Zhao?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dainis_Boumber?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dainis_Boumber?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Houston?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dainis_Boumber?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Vilalta?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Vilalta?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Houston?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Vilalta?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ricardo_Vilalta?enrichId=rgreq-c03724ec2467e82280b0d2c6170a6ac5-XXX&enrichSource=Y292ZXJQYWdlOzI4NzI0MjM0MztBUzozOTI4MzM0Mzg2MzM5ODZAMTQ3MDY3MDE5ODIxNA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Fault Resilient Physical Neural Networks on a Single Chip

Weidong Shi, Yuanfeng Wen, Ziyi Liu, Xi Zhao, Dainis Boumber, Ricardo Vilalta, Lei Xu
University of Houston Houston, TX 77004, U.S.A
{larryshi,wyf, ziyili}@cs.uh.edu, xzhao21@central.uh.edu, dboumber@uh.edu,
vilalta@cs.uh.edu, Ixu13@uh.edu

ABSTRACT

Device scaling engineering is facing major challenges in pro-
ducing reliable transistors for future electronic technologies.
With shrinking device sizes, the total circuit sensitivity to
both permanent and transient faults has increased signifi-
cantly. Research for fault tolerant processors has primarily
focused on the conventional processor architectures. Neu-
ral network computing has been employed to solve a wide
range of problems. This paper presents a design and im-
plementation of a physical neural network that is resilient
to permanent hardware faults. To achieve scalability, it us-
es tiled neuron clusters where neuron outputs are efficiently
forwarded to the target neurons using source based spanning
tree routing. To achieve fault resilience in the face of increas-
ing number of permanent hardware failures, the design pro-
actively preserves neural network computing performance
by selectively replicating performance critical neurons. Fur-
thermore, the paper presents a spanning tree recovery solu-
tion that mitigates disruption to distribution of neuron out-
puts caused by failed neuron clusters. The proposed neuron
cluster design is implemented in Verilog. We studied the
fault resilience performance of the described design using
a RBM neural network trained for classifying handwritten
digit images. Results demonstrate that our approach can
achieve improved fault resilience performance by replicating
only 5% most important neurons.

1. INTRODUCTION

Device physics, fabrication, and process scaling engineer-
ing are facing major challenges in producing reliable tran-
sistors for future electronic technologies. With shrinking de-
vice sizes [21], the total circuit sensitivity to both permanent
faults and transient faults is expected to increase (e.g., [16]).
In the future, devices will likely fail due to permanent faults
in silicon (e.g., [5, 6, 10]). These permanent faults include
manufacturing faults that escape testing (e.g., [35]), faults
that appear during the chip’s lifetime [49], or age-related de-
vice wear-out [40]. Multiple transient faults may also occur
within a circuit’s operating time window [18]. These include
single particle strikes that lead to double bit-flips or multiple
particle strikes that are close enough temporally. Traditional
fault tolerant techniques that work well under single tran-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ESWEEK ’14, October 12 - 17 2014, New Delhi, India

Copyright 2014 ACM 978-1-4503-3050-3/14/10$15.00.
http://dx.doi.org/10.1145/2656106.2656126.

sient fault may not scale when subjected to a multiple-fault
environment. Research for fault tolerant computing devices
has primarily focused on the conventional processor archi-
tectures. (e.g., [11, 30, 31, 37, 15, 51]). The studies include:
hardware fault detection (e.g., [11, 30, 31, 37]), and fault
recovery (e.g., [15, 51]).

Neural network computing has been employed to solve a
wide range of applications such as, speech recognition (e.g.,
[32]), image processing and pattern recognition (e.g., [14]),
compression and dimension reduction (e.g., [19]), hand track-
ing [27], autonomous robots (e.g., [45]), real-time embedded
controller (e.g., [8]), cognition and behavior modeling (e.g.,
[46)).

Physical neural networks (e.g., [23, 39]) implement neural
computing and the associated learning algorithms in hard-
ware; it capitalizes on the inherent parallelism of neural
computing. Among physical neural networks, neuromorphic
networks refer to the hardware design or implementation
that closely emulates the biological neural mechanisms (e.g.,
[22, 42, 2, 34]). For example, the recent DARPA SyNAPSE
program is aimed to create physical neuromorphic machine
technology that is scalable to biological levels, and that will
pave the road for creating future intelligent machines.

A variety of technologies have been explored for imple-
menting physical neural networks such as FPGA (e.g., [44,
41]), specialized analog and digital circuits (e.g., [3, 36, 4, 1,
7]), asynchronous circuits (e.g., [26, 38, 20]), systolic arrays
(e.g., [9]), and nano-electronics (e.g., [52]).

Compared with the conventional processor architectures,
physical neural networks offer the advantage of being fault
tolerant. According to a previous analysis [43], acceptable
fault tolerant performance in the conventional many-core
processor architecture requires 100% faults covered. This
leads to increasing design costs and hardware complexity. In
contrast, when properly designed, physical neural networks
can continue to operate in the presence of both permanent
hardware faults and transient faults. In this paper, we pro-
pose new physical neural network approaches that are highly
fault resilient. The main contributions of the paper are as
follows:

e We describe a physical neural network architecture
based on inter-connected tiles of neuron clusters in-
tegrated on a single-chip.

e We demonstrate the ability of efficient and graceful
performance degradation (defined as the capability of
gradually reducing performance with the increase of
hardware faults).

e Our solution supports performance recovery from hard-
ware damages to physical neural networks under con-
trollable budgets of hardware resources.

e We propose an efficient approach to route neural com-
puting outputs for a mesh of neuron clusters based on
spanning trees and source based routing, and design a

[_Router Interface |
T

22 HEEE ie| HEEE
28 Neuron g8 Neuron
a° Cluster 5° Cluster

\

[Rou(erlmeri?ce | [Router Interface]~"'~._ [Router Interface__|
T = I

[Router Interface | [_Router Interface |
T T

HEEE

Neuron
Cluster

Synapse
Cache

B P
2| BMEEE 8o |[MEEE 8¢ 0000
g8 Neuron 28 Neuron ge Neuron
3 ° Cluster @ ° Cluster gl | Cluster
T on-Chip ' o
LN) E?s(S(zulh Wlesl
1 t t
| Router Interface e
T T ":.
v ¥ i)

HHEE

Neuron
Cluster

l Neuron

Dispatcher States l Fanout ‘

e N

Pipelined Pipelined Pipelined
Mul Accumulator

Exp Unit

AT
RLPIIE—p e (e

Figure 1: Physical neuron clusters on a single chip: a mesh
of physical neuron clusters with on-chip interconnects. Fach
cluster contains a routing interface for routing neural out-
puts sent from the neighbors. The functional units of each
neuron cluster are pipelined. In addition, each neuron clus-
ter contains a weight cache. Routing is spanning tree based
using source neuron cluster identity. Fach cluster contain-
s build-in support to reconstruct new spanning trees when
permanent faults occur to routing neuron clusters.

solution to recover spanning tree routes in the face of
permanent routing path faults.

2. DESIGN OF SCALABLE AND FAULT
RESILIENT PHYSICAL NEURAL NET-
WORKS

2.1 Scalable Physical Neuron Networks

For a typical multi-layer neural network, during the "for-
ward pass”, an input pattern (e.g., image) is presented to the
neurons of an input layer. For successive layers, the input
to each neuron is the sum of the scalar products of the in-
puts with their respective weights: z; = b; + > | v; * wij,
where w;; is the weight connecting neuron j to neuron i,
and v; is the output of neuron i. b; is a bias value. The
output of a neuron j is calculated according to the equation
9 = Treap(=2,)"

The output is then sent to the neurons of the next layer.
In restricted Boltzmann machine (RBM) [19, 28], in which
stochastic, binary image pixels are connected to stochastic
feature detectors using symmetrically weighted connections.
The feature detectors correspond to hidden units.

To achieve scalability, we implement physical neural net-
works as tiles of neuron clusters integrated together on-chip
(neuron cluster tiles on chip). Figure 1 shows a high level
diagram of the proposed architecture. Each chip comprises a
grid of inter-connected neuron clusters. Each neuron cluster
connects to the four neighbors with bi-directional links. The
four connections are named respectively, north, west, south,
and east. Neuron clusters on the edges have three neigh-
bors and the neuron clusters at the corners have only two
neighbors. Each neuron cluster contains, a routing inter-
face (connecting to the four neighboring clusters), a synapse
weight cache (a directly mapped cache for storing connection
weights), three pipelined functional units, a set of register-
s for storing neuron states, a scheduler that dispatches, for
each neuron, the input summation to a pipelined exponential
function after all the weighted inputs are summed togeth-
er, and fanout logics for forwarding neuron outputs to the

North
East

Sauh
West

Inm

Pipelined |y Pipelined Exp | Fanout

Multiplier Pipelined Unit
Dispatcher

Accumulator *
Wi .
i <
<« - —— .. | .. F» Scheduler

EF

»l—

A

1
|

Weigmhe SRAM Neuron States (# of Neurons)

North
—

il

Router {1 SRAM Routing Table

ek

i

Spanning Tree Buffer

Outputs

Figure 2: Block diagram of a physical neuron cluster. Fach
cluster contains pipelined neural computing components, a
weight cache, a routing unit (with routing table) and schedul-
ing logics.

target neurons who need them as inputs. For each neuron,
the three functional units implement the neural computing
equations that compute the neuron output based on the in-
puts. For each neuron, its output is routed by the routing
interface to all the target neurons that receive the output
as input. For both performance and efficiency reasons, the
functional units are pipelined. They are, a pipelined multi-
plier, a pipelined accumulator, and a pipelined exponential
evaluator that performs the last neural computing equation
for each neuron based on the summed inputs.

Multiple neurons are allocated to each neuron cluster.
Each neuron cluster is self-contained in the sense that for
the n allocated neurons, it stores the synapse weights for all
the incoming connections to the n neurons (in the synapse
weight cache) and states of the n neurons (in the neuron
state registers). In addition, the routing interface contain-
s a routing table that stores all the necessary information
for forwarding neuron outputs sent from a neighbor neuron
cluster. Since all the needed weight values are stored local-
ly inside each cluster, computing the output of each neuron
based on the inputs does not incur any external memory
traffic. All the computations involve only local data ac-
cesses to the synapse cache and the neuron state register
bank. This significantly improves performance and efficien-
cy over many prior efforts of designing physical neural net-
works where connection weights or neuron outputs are s-
tored in external DRAM. The gap between ASIC processor
performance and delay of DRAM memory systems create
the memory wall problem. Our tiled neuron cluster design
does not suffer from this problem because all the connec-
tion weights are cached on-chip and the neuron outputs are
distributed to the target neurons using on-chip networks. S-
ince all the weights are cached internally, there is an upper
bound on the number of input connections that a neuron
can have. Size of the synapse cache increases with the up-
per bound value. Under the same transistor count budget,
increasing the upper bound will reduce the total number of
neuron clusters that one can have on a single chip. This
upper bound limit applies to the incoming connections only.
There is no limit on the number of target neurons that a
neuron can connect. Such a design favors neural network-
s with sparse connections. It is worth pointing out that
biological neural networks have sparse connections. For ex-
ample, the human brain has close to 10 billion neurons, but
the number of synapse connections is about five thousand
per neuron. Alternatively, synapse values can be stored in
3D stacked memory chips (e.g., [50, 33]) integrated with
physical neural network circuit.

Figure 3 shows a high level implementation of the weight
cache and how a neuron cluster retrieves the weights upon

Weight Cache
<NCk, Ni, ts, Vi>

Target
Index Table NeuronID Weight

All Target Neurons
With Input
Connections from Ni

Wij=08,j=2

SRAM Ne

Pipelined
T Accumulator

Figure 3: Weight cache and weight lookup.

receipt of output V; from neuron N,. First, the routing table
will determine if V; should be forwarded to the local neuron-
s. Then an index table will be used to find the weight cache
base address for all the target neurons that receive input
from N;. After that, the weight values retrieved from the
cache, in combination with V;, and the previous accumula-
tion results, all together are sent to the pipelined multiplier
and accumulator.

Our design of tile based neuron clusters is scalable. There
is no external data traffic when neuron outputs are comput-
ed. The neuron cluster itself contains a routing interface for
forwarding neuron outputs to all the destination clusters.
The neuron cluster can be replicated to form a 2D grid of N
by N clusters. If each cluster can handle n neurons and there
are N by N clusters on-chip, there will be N x N x n neu-
rons on each chip. Two connecting neurons can be allocated
to the same neuron cluster. However, the more likely sce-
nario is that they are allocated to different neuron clusters.
To support efficient routing of neuron outputs, each neu-
ron cluster contains a routing interface and a routing table.
Each cluster has bi-directional connections to all the imme-
diate neighbors. Incoming data from the four directions (N,
W, S, E), are temporarily stored in four input queues. If
the received input is needed by one of the neurons, the val-
ue will be forwarded to a dispatcher and then sent to the
functional units with the corresponding connection weight
retrieved from the synapse cache. At the same time, the
routing interface will determine where the input should be
forwarded to by looking up a routing table. Using a single
bit for each immediate neighbor, the routing table indicates
whether and where an incoming data should be forwarded.
The routing decision is based on the data source. Ideally,
there can be one routing entry for each neuron. However,
such design requires too many hardware resources. A more
resource efficient solution is to have one routing entry per
source neuron cluster. In this case, if a chip contains 10x10
neuron clusters, the routing table requires only total 600 bits
(10x10 cluster x 6 routing bits).

In neural network computing, the output of a neuron is
often needed as inputs by multiple neurons. A naive solu-
tion is to flood a neuron output to all the neuron clusters.
Flooding neuron output will certainly slow down the per-
formance. It will waste routing resources and create unnec-
essary energy consumption. An optimal solution is to send
the neuron outputs to only these neuron clusters that need
them. This can be achieved using spanning trees or multi-
cast (e.g., [47, 53]). Figure 4 shows how the output from a
neuron in cluster Ni2 can be routed to the destination clus-
ters using a spanning tree. The number of routing messages
can be measured by the number of spanning tree edges. The
grid organization of neuron clusters can tolerate permanent
cluster faults because for a data source, it provides multiple
alternative paths to reach a destination neuron cluster, and

NCO00 NCO1 NC02
NC34 Routing Table
V NESWL

NC10 NC11 NC12 " Ncoo
NCO1

|:| - Paa NCiz|[1|o|1]1]0]0
[0}o] [0] [. [offina] temromm.

VNESWL

NC00

i s S

OB0000 05 Et

V: valid bit
m m - - N: forward to the north

|:| |:| |:| |:| |:| |:| E: forward to the east

S: forward to the south
@ Source Neuron Cluster () Sink Neuron Cluster

W: forward to the west
L: forward to the local

Figure 4: Routing of neuron outputs using spanning tree.
The source cluster is NCia. Its outputs are routed to the
leaf clusters (sink clusters) using a spanning tree.

therefore prevents a single point of failure in neuron output
transmissions.

For spanning tree based routing using data source as in-
dex, once the spanning trees are configured and stored in
the routing table of each cluster, permanent fault of a clus-
ter can prevent all the downstream neuron clusters from
receiving the inputs. To address this issue, we designed a
spanning tree recovery approach for reconstructing new s-
panning trees when permanently failed neuron clusters are
detected. The details are presented in section 2.4.

2.2 Tolerating Hardware Faults

To investigate the capacity of the physical neural networks
to tolerate hardware faults, we conducted detailed studies of
how hardware faults affect pattern recognition performance
of physical neural networks. A fault resilient example using
the restricted Bolzmann machine (RBM) is studied. The
RBM was tested on some of the recent neural computing
hardware (e.g., [38]) designed using asynchronous circuits.
Our example is a multi-layer image recognition RBMs fol-
lowing the description of [17]. The training set comprises
60,000 images of handwritten digits and the test set compris-
es 10,000 separate images [29]. The last layer of neurons
comprises 10 perceptron nodes that classify the hidden lay-
er features into the ten digits. During evaluation, transient
faults were induced to the physical neurons or transmissions
of the fanout signals. Recognition performance measured in
terms of percentage of correctly classified digital images was
recoded. As shown in Figure 5(a), performance gradual-
ly degrades when the number of physical neuron transient
faults increases. For the purpose of testing its limit, we
subjected the neural network model to a range of failure
rates including extreme high failure rates unlikely to occur
in the real world. For example, the system can retain 84%
accuracy even under a per neuron transient failure rate of
5% (on average five erroneous outputs every 100 rounds of
computing for each physical neuron). For tolerating trans-
mission faults, the system has no performance degradation
when the rate of transient transmission faults is less than
3%. Studies of permanent neuron faults indicate that, not
every neuron contributes equally to the overall performance.
Permanent faults to certain neurons are more critical than
faults in other neurons. As illustrated in Figure 5(b), dif-
ferent amount of performance degradation is observed when
permanent failure is introduced to each of the feature neu-
rons.

2.3 Neuron Allocation and Neuron Cluster Map

Given a neural network model, there exist multiple ways
to allocate the neurons to a set of neuron clusters. As shown

in Figure 6, a simple way is to allocate neurons to a set
of neuron clusters sequentially. However, sometimes, many
critical neurons could end up in the same neuron cluster,
which will likely amplify the negative consequence when the
cluster is permanently damaged. To minimize the risk, one
can randomly allocate neurons to the clusters, see Figure 6c.
Or a third approach is to evenly distribute neurons with
similar importance to all the neuron clusters. This can be
achieved by first sorting all the neurons based on their im-
portance. Then, the sorted neurons are allocated to the
clusters sequentially.

100.00%
95.00%
90.00%
85.00%
80.00%
75.00%
70.00%
65.00%
60.00%
55.00%

50.00%
0.00% 0.20% 0.40% 0.60% 1.00% 2.00% 3.00% 4.00% 5.00%

= Performance under Different Rates of Transient Routing Faults
= Performance under Different Rates of Per Neuron Transient Faults

(a) Performance of tolerating transient faults.

|
nan|
T

r
T

Il
+
[T

AReRERRN
TR
RO

1
performance degradation

¥

§

30%

0%

neurons.

Restricted Boltzmann Machines (RBMs)

o O
@ o

Perceptron

O
© 0 ®

B] == o=e=s

© O O

28x28 Sensor Layer 1000 500 250 30 10

60,000 Training Images

=l l.-l.l-
0 1 2 3 4 5 6 7 8 9

(c) Multi-Layer RBMs for recognizing images of hand-
written digits.

Figure 5: [llustration of fault tolerance for physical neural
networks using restrictive Bolzmann machine as an exam-
ple: The study uses a multi-layer RBM trained for handwrit-
ten digit recognition (60,000 training images and 10,000 test
images). Transient faults were induced to the physical neu-
rons and transmissions of the fanout signals. Recognition
performance was measured. In (b), performance effects of
permanent faults to the physical neurons were tested. Fach
box represents a meuron. The gray level corresponds to the
impact on the overall image classification accuracy when a
neuron fails. Darker means worse performance.

After completing the allocation of neurons to a set of neu-
ron clusters, the next step is to map neuron clusters to the
physical neuron tiles, see Figure 7. Similar to neuron allo-
cation, a simple approach is to map each neuron cluster to a
physical neuron tile according to a pre-determined pattern
such as row by row with sequential order inside each row, or

Neural Network Models

Allocate Neurons
to Neuron Clusters

Logical Neuron Clusters

Logical Neuron
Cluster 3

R

Logical Neuron
Cluster 2

Logical Neuron Logical Neuron

Cluster 1

Map Logical
to Physical Ne

o T i] i
]

\

NI

\ |
= = = TS T
== Ectn B | B @Eﬁ— B
5

2

st e et (et e [y

Physical Neuron Cluster Tiles

Physical Neuron Cluster Tiles

(b) Non-Sequential Map of Logical Neuron
Clusters to Physical Neuron Clusters

(a) Sequential Map of Logical Neuron Clusters to
Physical Neuron Clusters

Figure 7: Different approaches of mapping logical neuron
clusters to physical neuron clusters: (a) map logical neu-
ron clusters to physical neuron tiles according to a pre-
determined pattern; (b) randomly map logical neuron clus-
ters to physical neuron tiles.

column by column. Different mapping schemes could affec-
t the distribution of routing workloads among the physical
neuron tiles because each neuron tile also acts as a router
for exchanging neuron outputs. Certain physical neuron tiles
may become routing hotspots under certain neuron cluster
mapping schemes. To avoid routing hotspots, one can ran-
domly map logical neuron clusters to the physical neuron
tiles. For certain neural networks, random mapping can
more evenly distribute the routing demands to the physical
tiles. Different mapping schemes may also affect the average
length of routing spanning trees for a given neural network.

Neuron Cluster 1 Neuron Cluster 2

X, . X,
N5 N7 N8

N6
(a) Sequentially Allocating Neurons to the Clusters

N1 N2 N3

Neuron Cluster 1 Neuron Cluster 2

¥ »
/I /]

NE RE
2 Ay, &
o ol

EEAE AN

N1 N2

(b) Allocating Neurons with Equal Importance to Neuron Clusters

Neuron Cluster 1 Neuron Cluster 2

g ok

Critical neuron

(c) Randomly Allocating Neurons to the Clusters

Figure 6: Different schemes of allocating neurons to neuron
clusters: (a) sequential allocation of neurons to neuron clus-
ters; (b) priority balanced allocation of neurons to neuron
clusters, each cluster with roughly equal number of critical
neurons; (c¢) random allocation of neurons to neuron clus-
ters. Neurons with darker color are more important than
neurons with a lighter color.

2.4 Fault Resilient Neuron Replication

One of our objectives is to develop low overhead solutions
to preserve neural network performance when facing perma-
nent hardware faults. One naive approach is to replicate all
the neurons and allocate them to different physical neuron
clusters. When one neuron cluster fails, the neuron replicas
in the still operational clusters will continue to provide the

needed neural computing outputs. Although being fault tol-
erant, such a solution is less preferred because it incurs too
much hardware overhead in both area and energy consump-
tion. Leveraging the observation that failures of individu-
al neurons have drastically different impacts on the overall
neural network performance, we designed a more efficient
solution that selectively replicates only these most critical
neurons that, when missing, would lead to significant per-
formance degradation. The importance of neurons can be
evaluated quantitatively by measuring changes of the overall
neural network performance. To preserve performance in the
face of hardware faults, our approach only selectively repli-
cates a small percentage of neurons that are performance
critical. The exact percentage can be determined based on
the amount of available hardware resources. Using such a
solution, neural network performance is efficiently preserved
to the maximum with the smallest resource overhead possi-
ble.

For detecting permanent faults in a neuron cluster, one
simple approach is to ensure that, for each neuron cluster,
at least one neuron is replicated. Outputs from two identi-
cal neurons can be compared. Any mismatch of the neural
outputs can be detected and used to identify the failing neu-
ron cluster. Here we use an example to demonstrate how a
failing cluster can be detected. Assume that there are three
neuron clusters, NCj, NCj, and NC}. Cluster NC; con-
tains neuron N, and Ny; cluster NC; contains neuron N’
(replication of N,), and cluster NC} contains neuron N’
(replication of Ny). If a permanent fault happens to cluster
NCj (e.g., failed functional units), outputs of N, and N’
will mismatch. If outputs of V,” and Ny, match, then the sys-
tem can infer that cluster NCj is the source of failure. When
a faulty neuron cluster is identified, the information can be
reported to all the neuron clusters by sending a broadcast
message. To tolerate permanent faults of neuron clusters,
another alternative is to replicate the critical neurons twice.
This way, each critical neuron is allocated to three clusters.
By comparing the three outputs, a destination neuron clus-
ter can choose the output shared by at least two clusters.

For further optimization, we propose an additional tech-
nique called, neuron gating, to support low power and effi-
cient neural computing without significantly sacrificing per-
formance. The idea is to selectively clock gate the neurons
that are less performance critical. By only enabling these
critical physical neurons, one can achieve an optimal bal-
ance between performance preservation, speed, and energy
consumption.

2.5 Recovery of Fanout Routing Paths

Routing of neuron outputs is affected by permanent faults
to neuron clusters. To restore routing paths for distribut-
ing neuron outputs, we designed a runtime approach that
re-computes spanning trees after failed neuron clusters are
detected. According to our approach, when a permanent
fault of a neuron cluster is detected, its neighbor will send
a report message upstream. The message will be forward-
ed along the spanning tree path and reach the source neu-
ron cluster. Upon receipt of the report message, the source
neuron cluster will initiate the process to compute a new
spanning tree. The spanning tree re-compute algorithms
described in pseudo codes are shown in list Algorithm I. A
source neuron cluster NC; will broadcast a probe message
<probe, NCj, ts> where ts is a time stamp. A neuron clus-
ter increments the time stamp ts for each round of spanning
tree computation.

To support spanning tree computation, each neuron clus-
ter contains a spanning tree buffer with a small number of
entries to keep track of the probe message source and re-
sponses from the neighbors. For fast access, the spanning
tree buffer is implemented using content addressable memo-

ry (CAM) with source neuron cluster id as the index. In our
design, the default number of entries is four. Figure 8 shows
structure of the spanning tree buffer. When a neuron clus-
ter NCj receives a probe message initiated by cluster NCj,
it will find an available entry in the spanning tree buffer
and set the valid bit. If neurons of NC; receive outputs
from cluster NC;, NC; will send a sink message back to the
neighbor who forwards the probe message. The sink mes-
sage is used to indicate that either NCj or its downstream
clusters contain neurons who have input connections from
the neurons of cluster NCj;. Cluster NC; records the neigh-
bor that sends/forwards the probe message in the spanning
tree field, probe source. Then NC; forwards the probe mes-
sage to all its operational neighbors (excluding the original
neighbor who forwards the probe message and permanently
failed neighbors), and records the number of probe messages
sent.

Algorithm 1 Pseudocodes for recomputing spanning trees
in response to permanent faults in routing: part [

1: Upon receipt of a probe message <probe, NC;, ts> issued
by NC; from sender NC), in direction D by NC;;

2: Invalidate NC;’s routing paths in RoutingTable[NC;]
3: Using NC; as index and find if there is a matching entry p in the
SpanningTreeCAM;

4: if p == NULL then

5: p = Find an available spanning tree entry;

6: if p == NULL then

7 Find one occupied entry NC, where (row(NCp,)
> row(NC;)) or (row(NCy,)==row(NC;) and
col(NCp,)>col(NCy));

8: if p!= NULL then

9: Send a cancel message <cancel, NC,,> to direction X

where p.probe_source[x]==1;

10: end if

11: end if

12: if p!= NULL then

13: p.content = NCj; p.ts = ts; p.valid = true;

14: Send <probe, NC;, ts> to all the operational neighbors
and record p.number_of_probes_sent;

15: p.probe_source[D] = 1;

16: if NCj is a sink then

17: p.sink = true;

18: Send a sink message <sink, NC; > to NCy;

19: p.responded = true;

20: end if

21: else

22: Send a cancel message <Cancel, NC; > to NCly;

23: end if

24: else

25: Send a drop message <Drop, NC; > to the sender NCj;
26: end if

27: Upon receipt of a drop message <drop, NC; > by NC;
from direction D;

28: Using NC; as index and find if there is a matching entry p in the
SpanningTreeCAM;

29: if p == NULL or p.valid == false then

30: return;

31: end if

32: Set p.drop_neighbors[D] = 1;

33: if Sum(p.drop_neighbors) == p.number_of probes_sent then

34: if p.sink == false then

35: Send a drop message <drop NC; > along direction X where

p.probe_source[X] == 1;

36: end if

37: p.valid = false;

38: end if

Upon receipt of a probe message, neighbors of cluster NC);
will execute the same algorithms. If a duplicate probe mes-
sage is received by a neighbor NCj, NCj will send a drop
message back to its forwarder. A neuron cluster keeps track
of the number of drop message responses in the spanning tree
field, named drop neighbors. If all the neighbors of NC; send
back drop messages as responses to the probe messages and
NCj itself does not contain neurons who need the outputs,
NCj will send a drop message back to its upstream neighbor
who forwards the probe message to it. If a neuron cluster

NCj receives one or multiple sink messages as responses to
the forwarded probe messages and NCj itself has not sent a
sink message to its upstream probe message forwarder, NC;
will send a sink message back to the upstream neighbor who
forwards/sends the original probe message.

Figure 8 shows status of the spanning tree buffers with an
example. In the example, cluster NC'12 has permanent fault.
Neuron cluster NC1; initiates the spanning tree reconstruc-
tion process. Cluster NCi2 and NC23 have input connec-
tions from the neurons contained by cluster NCi1. The old
spanning tree for reaching NCas with NCi2 as a routing
cluster is broken. Figure 8 also illustrates the messages ex-
changed for computing a new spanning tree. Meanwhile, it
highlights the resulting spanning tree (in purple color). The
computed spanning tree is recorded in each neuron cluster’s
routing table.

Algorithm 2 Pseudocodes for recomputing spanning trees
in response to permanent faults in routing: part 11

Upon receipt of a sink message <sink, NC; > by NC; from
direction D;
: Using NC; as index and find if there is a matching entry p in the
SpanningTreeCAM;
if p == NULL or p.valid == false then
return;
end if
if p.responded == false and NC;!=NC; then
Send a sink message along direction X where p.probe_source[X]
== 1;
p.responded = true;
end if
: Set RoutingTable[NC;|[D] = 1;

. Upon receipt of a cancel message <cancel, NC; >

. Using NC; as index and find if there is a matching entry p in the
SpanningTreeCAM;

13: if p == NULL or p.valid == false then

14: return;

15: end if

16: if NC;!=NC; then

17: p.valid = false;

== =
o= O¥PX NPT N

18: Send a cancel message along direction X where
p-probe_source[X] == 1;
19: else

20: Recompute of a spanning tree failed. Wait for time period t
and resend probe messages <probe, NC;, ts+1> to the oper-
ational neighbors;

21: end if

Since the spanning tree buffer of each neuron cluster con-
tains only a small number of entries, it is possible that a
cluster may receive more probe messages than it can process.
When this happens, to avoid potential deadlocks in sending
probe messages, we use a tie breaking solution that assigns
probe precedence to the neuron clusters. For instance, neu-
ron clusters that have smaller row or column numbers have
higher precedence than the neuron clusters that have larg-
er row and/or column numbers. This means that when a
cluster NC receives a probe message initiated by NC; and
its spanning tree buffer is fully occupied, it will compare
NC; with these already stored in the spanning tree buffer.
If NC; has less priority than all of them, NC; will send a
cancel message <Cancel, NC;, ts> back. The cancel mes-
sage will be forwarded upstream all the way to cluster NCj;.
Upon receipt of the cancel message, cluster NC; will abort
the current round of spanning tree computation, wait for a
while, and restart a new round of spanning tree calculation.
If NC; has higher priority than one of the source clusters
that occupy NCj’s spanning tree buffer, NC; will evict one
of the source clusters that have less priority, and allocate the
available spanning tree entry to NC;. Accordingly, a cancel
message will be sent to the neighbor that forwards the probe
message of the evicted source cluster. To improve efficiency,
a neuron cluster can wait before it initiates a round of span-

ning tree calculation. For example, a low priority cluster
can wait until the clusters with higher priorities complete
first and then starts its spanning tree computation.

2.6 Fault Resilience of the Recovery Mecha-
nism Itself

Our fault model assumes that transient or permanent fail-
ures may occur at each physical neuron tiles. When a phys-
ical neuron tile fails, it may stop functioning or emit erro-
neous neural computing outcomes. Firstly, our fault resilient
physical neural network design can tolerate neuron tile fail-
ures by replicating critical neurons and allocating them to
different neuron tiles. Secondly, our fault detection and re-
covery mechanisms are completely distributed. Both fault
detection and spanning tree recovery are integrated with the
physical neuron tiles. Failed physical neuron tiles cannot
prevent operational physical neuron tiles from performing
their functions.

NC13———> Probe message
—————> Drop message
————> Sink message
Routing path
Old routing path

@ Source Neuron Cluster
. D sink Neuron Cluster

- M Permanently Failed Cluster

e S TSNC13 spanning tresre-compute table ™.

/ // Probe Source Sink Neighbor Drop Neighbor
~Nei /?/alid ink R ded [NTETSTWI[N I E I s IW\N‘ITE [sTw
[Neii | A~ 1T o 1 1 |o]JoJoJe|oJoJolo[1]o]o
[NC23 spanning tree.re-compute table .

y Probe Source Sink Neightor | Drop Neighbor

A _
Nci ?/alidIS|nk|R9n \ded NIEISIW N|[E[S|[WIN[E][S][W
7

.|

[Nea [+ T 71 clolo[|o]ololol []a]o
/ NC21 spanning tree re-compute table ™.
/ Probe Source Sink Neighbor | Drop Neighbor
[_mNci Valid ink Responded [N[E[STWINJTE[STW|NTETS[w

[N 7+ 1T o 7 1 1 [oJoJoJo]1]oJoJoJo[a]H

Figure 8: [llustration of spanning tree recompute. When
a routing meuron cluster has permanent fault, an affected
source neuron cluster whose outputs are routed by the faulty
neuron cluster can initiate a process to reconstruct a new s-
panning tree that can bypass the faulty neuron cluster. In the
example, cluster NC12 has a permanent fault. Cluster NC1y
is the source cluster. The figure shows some of the messages
exchanged among the neuron clusters and the progress of s-
panning tree reconstruction.

3. IMPLEMENTATION

As discussed in the previous sections, for each physical
neuron cluster, the main logic and memory components in-
clude, pipelined functional units, which further include a s-
ingle precision floating point accumulator, a multiplexer and
an exponential evaluator; a synapse weight cache, which s-
tores connection weights; a set of registers for storing neuron
states; a SRAM routing table; input/output queues for the
routing module; a fully associative spanning tree buffer for
runtime spanning tree re-computation; various logic com-
ponents for routing, scheduling, neuron output fanout, and
spanning tree message handling. For rapid prototyping, we
leveraged open source IP blocks whenever it is possible, and
implemented the neuron cluster design in Verilog. We e-
valuate the power and area performance of our design by
integrating these components and synthesizing the design.
Verilog implementation of the designed physical neural net-
works is synthesized using the Synopsys Design Compiler
with FreePDK at 45nm. It provides parameters for esti-
mating overhead and tuning an architecture simulator that
models the designed physical neural networks.

The floating pointer accumulator is derived from an open-
source single precision, IEEE-754 compliant, signed adder.

We implemented a 6-stage pipelined accumulator. The de-
sign is fully synthesizable, occupying around 400 config-
urable logic blocks when tested using FPGA. The single
precision floating pointer multiplier uses a 4-stage pipelined
design. Compared to the single precision accumulator and
multiplexer, the exponential unit is more complex (e.g., [12]).

The largest components per cluster are basically caches
and SRAMs. Their implementation is straightforward. For
the synapse weight cache, there are a maximum of 256 weight-
s for each neuron. The weight value itself is single precision
floating point based. The neuron states are stored in 16
registers, which are comparatively small. The routing table,
which stores the forwarding information, one bit per direc-
tion (south/north/east/west/itself) per cluster. If the chip
has 16x16 neuron clusters, the routing table has 256 entries
as direct mapped SRAM buffer indexed by the neuron clus-
ter id. The spanning tree buffer has four entries and is fully
associative. Each entry contains 8-bit index and 32-bit da-
ta. There are eight queues (four inputs and four outputs),
each with four packet buffers. The rest of the components
are logics for routing, scheduling, neuron output fanout, and
spanning tree recovery. Between two neighboring clusters,
the bidirectional bandwidth is 200Mbits/ps.

Based on the synthesis results using Synopsys design com-
piler, a fully synthesizable implementation of our design at
45nm, occupies 84.29mm?, and dissipates 15.5W of peak
power. The largest area and power overhead come from the
various SRAM based components. As a reference, Intel Core
i5 Lynnfield fabricated in 45nm has die size of 296 mm?.

Replication
I T T T 0 T T
4 1 | r

performance degradation
8
g

Figure 9: Fault resilience by selectively replicating the crit-
ical neurons. The figures show decrease of image classifica-
tion accuracy under different physical neuron replication set-
tings: mo replication (0%), replicating the most critical 5%
neurons, replicating the most critical 10% neurons, replicat-
ing the most critical 20% neurons. Importance of a neuron
is measured based on its impact on the overall classification
accuracy using the 10,000 test images. In the figure, each
boz corresponds to a neuron cluster. The color of the box
shows amount of performance decrease in image classifica-
tion when the corresponding neuron cluster has permanent
fault. Darker color means worse performance. As indicated
by the results, replicating small percentage of the most crit-
ical neurons can significantly reduce the negative influence
of neuron cluster with permanent fault on the classification
performance.

4. EVALUATION

To study the fault resilience performance of our design, we
used the same RBM neural network and handwritten digit
recognition task described in Section 2.2. The training image
set comprises 60,000 images of handwritten digits and the
test image set comprises 10,000 separate images [29]. The

multi-layer RBM configuration and training procedure are
based on the description of [17]. After training, the weight-
s are pruned to satisfy the bound on the number of input
connections per neuron by removing non significant weights
(weights close to zero). Weight pruning is a common prac-
tice in neural computing for reducing computation workload
(e.g., [48]). An architecture simulator is used to simulate
the grid of neuron clusters. The neurons are mapped to the
clusters. After training, the weights and connection settings
are stored in the cluster. Routing paths for neuron outputs
are pre-computed.

We then evaluate the influence of different options of allo-
cating logical neuron clusters to the neuron clusters on the
neural network performance. When assigning logical neuron
clusters to physical neuron clusters, there are two approach-
es, sequential mapping (assigning logical neuron clusters to
the physical clusters in linear order) and random mapping
(randomly assigning logical neuron clusters to the physical
clusters). Furthermore, the number of neurons allocated to
each cluster can vary. For example, one can assign 8 neu-
rons, 16 neurons, 24 neurons, or 32 neurons per cluster. As
demonstrated in Figure 10, the setting of 16 neurons per
cluster attains the best performance. Reducing the number
of neurons per cluster will increase concurrency level with a
price of decreased neuron cluster utilization. As the num-
ber of neurons allocated to each cluster decreases, the num-
ber of required clusters increases and routing becomes more
complex. As a result, performance becomes communication
dominated instead of computing dominated. On the other
side of the spectrum, when more neurons are allocated to a
cluster (e.g., 32 neurons per cluster), the cluster utilization
increases, but the overall speed decreases due to reduced
level of concurrency. For our pipelined neuron cluster, 16
neurons per cluster delivers the best speed performance.

[Cluster Utilization

= Relative Speed

0.8
0.6

0.4

0

8 [Per Cluster 16 Neurons/Per Cluster 24 /Per Cluster 32 Cluster

Figure 10: Relative speed of physical neural network versus
number of neurons per cluster. Speed is normalized against
a default setting of sizteen neurons per cluster. Performance
of physical neural network is communication bound when
the number of neurons per cluster is small (low cluster u-
tilization). Allocating large number of neurons per cluster
increases cluster utilization with reduced concurrency level.
For our pipelined neuron cluster, sixteen neurons per cluster
achieves the best balance between speed and resource utiliza-
tion.

To evaluate the effects of selective neuron replication, we
experimented with 5%, 10%, and 20% replication settings
where 5%, 10%, and 20% neurons were replicated accord-
ing to ranked importance. We rank the importance level
of a neuron as follows. After a neural network is trained,
during test phase, we induce fault to each neuron and mea-
sure the change in neural network performance (e.g., image
classification accuracy in our tested RBM network). The
procedure is repeated for all the hidden or feature detection
neurons. Figure 9 shows the performance impact of failing
clusters to the overall handwritten digit recognition perfor-
mance (measured as the amount of performance decrease in
correctly recognizing the test digit images). Each box rep-

resents one cluster. The gray color level is proportional to
the performance change. Darker color means higher level of
negative impact on the overall recognition performance. As
shown by the results, without neuron replication, permanent
faults to the clusters that contain critical neurons can cause
significant decrease in performance. Brighter color means
less change in the overall performance. With only 5% of
the most important neurons replicated, the neural network
performance can be effectively preserved.

We designed tools that, given a neural network model,
allocate neurons to the neuron clusters and compute the
routing tables. For each neuron cluster, our developed tool
computes a spanning tree that will route its outputs to all
the neuron cluster recipients (sink clusters). Each neuron
cluster can be involved in routing outputs sent from multi-
ple source neuron clusters. For each routing neuron cluster,
one can count the number of source neuron clusters, it will
forward their outputs to the downstream clusters. Similar-
ly, one can also count the number of downstream clusters
that will receive data from a source neuron cluster through
a routing cluster. Figure 11 illustrates the upstream and
downstream statistics of all the routing neuron clusters for
the studied image classification neural network. When a
neural cluster fails permanently, all the affected downstream
clusters will stop receiving inputs from the affected source
clusters.

S0 00 NG 0 s 0N

(a) Number of Upstream Clusters Whose Outputs
Are Routed by Each Neuron Cluster

R EEREEREE N
T

(b) Number of Downstream Clusters VWho Will Be
Affected When a Neuron Cluster Has Permanent
Routing Fault

Figure 11: Impact of permanent routing faults caused by
failed neuron clusters. For each routing neuron cluster, the
number of upstream clusters counts the number of unique
upstream clusters whose outputs it will forward to a down-
stream cluster. The number of downstream impact counts
the number of downstream clusters who receive inputs from
a upstream cluster through a routing neuron cluster (each
source - sink cluster pair is counted once). The gray level
is proportional to magnitude of the number. The data was
collected from sequential mapping of neuron clusters.

The neuron cluster mapping approach shown in Figure 11
has one drawback that certain neuron clusters have higher
routing workload than the others, as reflected in the uneven
distribution of upstream routing statistics. An improved
solution is to randomly map logical neuron clusters to the
physical neuron clusters. The results are shown in Fig-
ure 12. When randomized, the standard deviation of up-
stream counts for all the routing clusters reduces from 22.87
to 16.4. The means that routing workload is more evenly
distributed across the neuron clusters when logical neuron
clusters are randomly mapped.

Another advantage is that with randomization, both the
total and average spanning tree lengths for all the neuron
clusters are also reduced. When randomly mapped, the aver-
age spanning tree height for all the spanning trees decreases
from 8.95 to 7.1.

(a) Number of Upstream Clusters VWhose Outputs
Are Routed by Each Neuron Cluster

(b) Number of Downstream Clusters VWho Will Be
Affected VWhen a Neuron Cluster Has Permanent
Routing Fault

Figure 12: Impact of permanent routing faults caused by
failed neuron clusters. For each routing neuron cluster, the
number of upstream clusters counts the number of unique
upstream clusters whose outputs it will forward to a down-
stream cluster. The number of downstream impact counts
the number of downstream clusters who receive inputs from
a upstream cluster through a routing neuron cluster (each
source - sink cluster pair is counted once). The gray level
is proportional to magnitude of the number. The data was
collected from random mapping of neuron clusters.

ShoaNow e uy .

e ——— = = = £ = = =] R]
a) Ave}‘age Spanning Tree Height Under
Sequential Cluster Allocation

I
= = - o -

(b)) Average Spanning Tree Height Under
Random Cluster Allocation

Figure 13: Awerage spanning tree heights for all the source
neuron clusters. Results on the left side show average span-
ning tree heights under sequential mapping of neuron clus-
ters. Results on the right side show average spanning tree
heights under random mapping of neuron clusters. For a
source neuron cluster, average spanning tree height is calcu-
lated as, dividing the total routing path length for all the leaf
clusters who receive input from the source neuron cluster by
the number of leaf clusters. The gray level is proportional to
the spanning tree length. Random cluster mapping reduces
the total routing path for all the spanning trees by 25.3%.

5. RELATED WORK

There have been continuous efforts in realizing physical
neural networks (e.g., [23]). Physical neural networks im-
plement neural computing and the associated learning algo-
rithms in hardware. Recently, physical neuromorphic net-
works that closely emulate the biological neural mechanisms
(e.g., [22, 42]) have also attracted significant research at-
tention. For example, neuromorphic networks implemented
using FPGA [44] or general purpose processors [24] have
been described in the literature. In the past, a variety of
hardware technologies have been explored for implementing
physical neural networks including FPGA (e.g., [44]), spe-
cialized analog and digital circuits (e.g., [3, 36, 4, 1, 7]),
asynchronous circuits (e.g., [26, 38]), systolic arrays (e.g.,
[9]), and nano-electronics (e.g., [52]). For efficient on-chip

communication of neuron outputs, multi-cast based routing
(e.g., [47, 53]) has been proposed to reduce the traffic re-
quired to route neuron outputs to the destinations. Another
set of related work can be found in the area of fault tolerant
network-on-chip (e.g., [25, 13]).

Our paper distinguishes from the prior related work main-
ly in these aspects. Firstly, one of the main focuses of our
work is to develop new physical neural network approaches
that can attain fault resilience and pro-actively preserve the
performance of neural computing in the face of permanen-
t hardware faults and failures (an imminent problem faced
by device engineers and ASIC designers). We propose new
techniques such as selective replication of critical neuron-
s to tolerate permanent hardware faults in physical neural
networks. Since our solution only replicates the most criti-
cal neurons, it incurs minimal resource overhead. Secondly,
we introduce a routing recovery approach that recomputes
spanning trees for distributing neuron outputs after perma-
nent faults occur to on-chip routing nodes. The existing
multi-cast based approaches for neuromorphic computing
doesn’t address routing path reliability and recovery under
permanent hardware faults. Furthermore, our neural out-
put spanning tree routing is based on neuron cluster source
addresses (source routing) instead of destination addresses.
Although research in fault tolerant network-on-chip address-
es routing paths recovery when fault occurs, these techniques
primarily deal with on-chip networks exhibiting different be-
haviors and characteristics from a multi-layer physical neu-
ral network. Furthermore, those approaches don’t address
nor provide solutions for physical neural network fault re-
silience in general. Our system provides a comprehensive
and holistic scheme for attaining physical neural network
fault resilience with a collection of fault tolerant and recov-
ery techniques (e.g., selective neuron replication, importance
based neuron allocation) specifically considering the nature
of neural computing. In addition, different from the prior
work, our design mitigates the performance bottleneck of
memory wall by eliminating the external data access traf-
fic. Neuron outputs are routed to all the target neurons
using efficient source based spanning tree routing and mesh
based on-chip networks. Synapse weights are cached on-
chip. Consequently, the design improves both reliability and
performance.

6. CONCLUSION

This paper introduces a scalable and fault resilient phys-
ical neural network design. To achieve scalability, our de-
sign uses tiled neuron clusters where neuron outputs are ef-
ficiently forwarded to the target neurons using source based
spanning tree routing. The design solves the memory wal-
I problem by eliminating the off-chip data traffic with per
cluster synapse caches. For fault resilience when facing per-
manent hardware failures, the design pro-actively preserves
neural network computing performance by selectively repli-
cating performance critical neurons. Furthermore, the paper
presents a spanning tree recovery solution that mitigates dis-
ruption to distribution of neuron outputs caused by failed
neuron clusters. The proposed neuron cluster design is im-
plemented in Verilog. We study the fault resilience per-
formance of the described design using a RBM neural net-
work trained for classifying handwritten digit images. Re-
sults demonstrate that our approach can achieve improved
fault resilience performance with minimal cost on hardware
resources by selectively replicating only 5% most important
neurons.

References

[1] A. Achyuthan and M. Elmasry. Mixed ana-
log/digital hardware synthesis of artificial neural net-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

works. Computer-Aided Design of Integrated Circuits
and Systems, IEEE Transactions on, 13(9):1073 —1087,
sep 1994.

D. Balduzzi and G. Tononi. What can neurons do for
their brain? communicate selectivity with bursts. The-
ory in Biosciences, page 17 pages, 2012.

A. Bermak and D. Martinez. Digital VLSI implementa-
tion of a multi-precision neural network classifier. In 6th
International Conference on Neural Information Pro-
cessing, volume 2, pages 560-565, 1999.

A. Bermak and D. Martinez. A compact 3D VLSI classi-
fier using bagging threshold network ensembles. Neural
Networks, IEEE Transactions on, 14(5):1097 — 1109,
sept. 2003.

S. Borkar. Designing reliable systems from unreliable
components: The challenges of transistor variability
and degradation. IEEE Micro, 25(6):10-16, Nov. 2005.
M. A. Breuer, S. K. Gupta, and T. M. Mak. Defect and
error tolerance in the presence of massive numbers of
defects. IEEE Des. Test, 21(3):216-227, May 2004.

B. E. Brown, X. Yu, and S. L. Garverick. Mixed-mode
analog VLSI continuous-time recurrent neural network.
In M. H. Rashid, editor, Circuits, Signals, and Systems,
pages 398-403. IASTED/ACTA Press.

M. Chiaberge and L. M. Reyneri. Cintia: A neuro-fuzzy
real-time controller for low-power embedded systems.
IEEE Micro, 15(3):40-47, June 1995.

J.-H. Chung, H. Yoon, and S. R. Maeng. A systolic ar-
ray exploiting the inherent parallelisms of artificial neu-
ral networks. Microprocess. Microprogram., 33(3):145—
159, May 1992.

Computing Community Consortium. CCC visioning s-
tudy on cross-layer reliability. http://wuw.relxlayer.
org/, 2012.

K. Constantinides, O. Mutlu, T. Austin, and V. Bertac-
co. Software-based online detection of hardware defect-
s mechanisms, architectural support, and evaluation.
In Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 40,
pages 97-108, 2007.

J. Detrey and F. de Dinechin. A parameterized
floating-point exponential function for fpgas. In Field-
Programmable Technology, Proceedings. IEEE Interna-
tional Conference on, pages 27 —34, 2005.

D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester,
and D. Blaauw. A highly resilient routing algorithm
for fault-tolerant nocs. In Design, Automation Test in
Europe Conference Exhibition, 2009. DATE 09., pages
21-26, 2009.

B. Girau and C. Torres-Huitzil. Massively distributed
digital implementation of an integrate-and-fire legion
network for visual scene segmentation. Neurocomput.,
70(7-9):1186-1197, Mar. 2007.

S. Gupta, S. Feng, A. Ansari, J. Blome, and S. Mahlke.
The stagenet fabric for constructing resilient multicore
systems. In Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture, MI-
CRO 41, pages 141-151, 2008.

J. Han, E. Taylor, J. Gao, and J. Fortes. Faults, er-
ror bounds and reliability of nanoelectronic circuits. In
Application-Specific Systems, Architecture Processors,
2005. ASAP 2005. 16th IEEE International Conference
on, pages 247 — 253, july 2005.

R. Hecht-Nielsen. Replicator neural networks for uni-
versal optimal source coding. Science, 269(5232):1860—
1863, 1995.

C. J. Hescott, D. C. Ness, and D. J. Lilja. Scaling an-
alytical models for soft error rate estimation under a
multiple-fault environment. In Proceedings of the 10th
Euromicro Conference on Digital System Design Archi-

(19]

20]

21]

(22]

23]

[24]

(25]

[26]

27]

28]

29]

(30]

(31]

(32]
33]
(34]

(35]

(36]

tectures, Methods and Tools, DSD ’07, pages 641-648,
2007.

G. E. Hinton and R. R. Salakhutdinov. Reduc-
ing the dimensionality of data with neural networks.
313(5786):504-507, 2006.

N. Imam, F. Akopyan, J. Arthur, P. Merolla,
R. Manohar, and D. Modha. A digital neurosynaptic
core using event-driven qdi circuits. In Asynchronous
Circuits and Systems (ASYNC), 2012 18th IEEE In-
ternational Symposium on, pages 25 —32, may 2012.

H. Iwai. Roadmap for 22nm and beyond (invited
paper). Microelectron. Eng., 86(7-9):1520-1528, July
2009.

E. Izhikevich. Simple model of spiking neurons. Neural
Networks, IEEE Transactions on, 14(6):1569 — 1572,
nov. 2003.

A. Jahnke, T. Schonauer, U. Roth, K. Mohraz, and
H. Klar. Simulation of spiking neural networks on d-
ifferent hardware platforms. In Proceedings of the 7th
International Conference on Artificial Neural Network-
s, ICANN 97, pages 1187-1192, 1997.

X. Jin, M. Lujan, L. A. Plana, S. Davies, S. Temple,
and S. B. Furber. Modeling spiking neural networks
on spinnaker. Computing in Science and Engineering,
12(5):91-97, 2010.

Y. B. Kim and Y.-B. Kim. Fault tolerant source rout-
ing for network-on-chip. In Defect and Fault-Tolerance
in VLSI Systems, 2007. DFT °07. 22nd IEEE Interna-
tional Symposium on, pages 12-20, 2007.

T. J. Koickal, L. C. Gouveia, and A. Hamilton. A
programmable spike-timing based circuit block for re-
configurable neuromorphic computing. Neurocomput.,
72(16-18):3609-3616, Oct. 2009.

M. Krips, T. Lammert, and A. Kummert. Fpga im-
plementation of a neural network for a real-time hand
tracking system. In Proceedings of the The First IEEE
International Workshop on Electronic Design, Test and
Applications (DELTA ’02), DELTA ’02, pages 313,
2002.

H. Larochelle and Y. Bengio. Classification using dis-
criminative restricted boltzmann machines. In Proceed-
ings of the 25th international conference on Machine
learning, ICML 08, pages 536-543, 2008.

Y. LeCun and C. Cortes. The MNIST database of hand-
written digits. http://yann.lecun.com/exdb/mnist/,
2009.

M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve,
V. S. Adve, and Y. Zhou. Understanding the propa-
gation of hard errors to software and implications for
resilient system design. In Proceedings of the 13th in-
ternational conference on Architectural support for pro-
grammang languages and operating systems, ASPLOS
XIII, pages 265276, 2008.

Y. Li, S. Makar, and S. Mitra. Casp: concurrent au-
tonomous chip self-test using stored test patterns. In
Proceedings of the conference on Design, automation
and test in FEurope, DATE ’08, pages 885-890, 2008.
R. P. Lippmann. Review of neural networks for speech
recognition. Neural Comput., 1(1):1-38, Mar. 1989.

G. Loh. 3d-stacked memory architectures for multi-core
processors. In Computer Architecture, 2008. ISCA ’08.
35th International Symposium on, pages 453-464, 2008.
C. K. Machens. Building the human brain.
338(6111):1156-1157, 2012.

E. J. McCluskey, A. Al-Yamani, J. C.-M. Li, C.-W.
Tseng, E. Volkerink, F.-F. Ferhani, E. Li, and S. Mitra.
Elf-murphy data on defects and test sets. VLSI Test
Symposium, IEEE, 2004.

C. Mead. Analog VLSI and neural systems. VLSI sys-
tems series.

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

A. Meixner, M. E. Bauer, and D. Sorin. Argus: Low-
cost, comprehensive error detection in simple cores.
In Proceedings of the 40th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 40,
pages 210-222, 2007.

P. Merolla, J. Arthur, F. Akopyan, N. Imam,
R. Manohar, and D. Modha. A digital neurosynaptic
core using embedded crossbar memory with 45pj per
spike in 45nm. In Custom Integrated Clircuits Confer-
ence (CICC), 2011 IEEE, pages 1 —4, sept. 2011.

J. Misra and I. Saha. Artificial neural networks in hard-
ware: A survey of two decades of progress. Neurocom-
put., 74(1-3):239-255, Dec. 2010.

S. Nassif, K. Bernstein, D. Frank, A. Gattiker,
W. Haensch, B. Ji, E. Nowak, D. Pearson, and
N. Rohrer. High performance cmos variability in the
65nm regime and beyond. In FElectron Devices Meeting,
2007. IEDM 2007. IEEFE International, pages 569 —571,
dec. 2007.

N. Nedjah and L. de Macedo Mourelle. Reconfigurable
hardware for neural networks: binary versus stochastic.
Neural Comput. Appl., 16(3):249-255, May 2007.

A. Nere, U. Olcese, D. Balduzzi, and G. Tononi. A neu-
romorphic architecture for object recognition and mo-
tion anticipation using burst-stdp. PLoS ONE, 7(5):17
pages, 5 2012.

S. Nomura, M. D. Sinclair, C.-H. Ho, V. Govindaraju,
M. de Kruijf, and K. Sankaralingam. Sampling + dmr:
practical and low-overhead permanent fault detection.
In Proceedings of the 38th annual international sympo-
sium on Computer architecture, ISCA 11, 2011.

A. R. Omondi and J. C. Rajapakse. FPGA Implemen-
tations of Neural Networks. Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

P. Rocke, B. McGinley, F. Morgan, and J. Maher. Re-
configurable hardware evolution platform for a spiking
neural network robotics controller. In Proceedings of
the 3rd international conference on Reconfigurable com-
puting: architectures, tools and applications, ARC’07,
pages 373-378, 2007.

D. Rumelhart, J. McClelland, and S. D. P. R. G. Uni-
versity of California. Foundations: Vol. 1 ; Foundation-
s. Computational Models of Cognition and Perception.
F. Samman, T. Hollstein, and M. Glesner. Multicas-
t parallel pipeline router architecture for network-on-
chip. In Design, Automation and Test in Europe, 2008.
DATE 08, pages 1396-1401, 2008.

J. Sietsma and R. Dow. Neural net pruning-why and
how. In Neural Networks, IEEE International Confer-
ence on, pages 325 —333 vol.1, 1988.

A. W. Strong, E. Y. W. abd R.-P. Vollertsen, J. Sune,
G. L. Rosa, T. D. Sullivan, and S. E. R. III. Reliability
Wearout Mechanisms in Advanced CMOS Technologies.
Wiley-IEEE Press, 2009.

C. Tan, R. Gutmann, and L. Reif. Wafer Level 3-D ICs
Process Technology.

X. Tang and S. Wang. A low hardware overhead self-
diagnosis technique using reed-solomon codes for self-
repairing chips. IEEE Trans. Comput., 59(10):1309—
1319, Oct. 2010.

O. Tirel, J. H. Lee, X. Ma, and K. K. Likharev. Archi-
tectures for nanoelectronic implementation of artificial
neural networks: new results. Neurocomput., 64:271—
283, Mar. 2005.

J. Wu and S. Furber. A multicast routing scheme
for a universal spiking neural network architecture.
53(3):280-288, 2010.

https://www.researchgate.net/publication/287242343

